Set-label modeling and deep metric learning on person re-identification

نویسندگان

  • Hao Liu
  • Bingpeng Ma
  • Lei Qin
  • Junbiao Pang
  • Chunjie Zhang
  • Qingming Huang
چکیده

Person re-identification aims at matching individuals across multiple non-overlapping adjacent cameras. By condensing multiple gallery images of a person as a whole, we propose a novel method named SetLabel Model (SLM) to improve the performance of person re-identification under the multi-shot setting. Moreover, we utilize mutual-information to measure the relevance between query image and gallery sets. To decrease the computational complexity, we apply a Naive–Bayes Nearest-Neighbor algorithm to approximate the mutual-information value. To overcome the limitations of traditional linear metric learning, we further develop a deep non-linear metric learning (DeepML) approach based on Neighborhood Component Analysis and Deep Belief Network. To evaluate the effectiveness of our proposed approaches, SLM and DeepML, we have carried out extensive experiments on two challenging datasets iLIDS and ETHZ. The experimental results demonstrate that the proposed methods can obtain better performances compared with the state-of-the-art methods. & 2014 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constrained Deep Metric Learning for Person Re-identification

Person re-identification aims to re-identify the probe image from a given set of images under different camera views. It is challenging due to large variations of pose, illumination, occlusion and camera view. Since the convolutional neural networks (CNN) have excellent capability of feature extraction, certain deep learning methods have been recently applied in person re-identification. Howeve...

متن کامل

Nonlinear Local Metric Learning for Person Re-identification

Person re-identification aims at matching pedestrians observed from non-overlapping camera views. Feature descriptor and metric learning are two significant problems in person re-identification. A discriminative metric learning method should be capable of exploiting complex nonlinear transformations due to the large variations in feature space. In this paper, we propose a nonlinear local metric...

متن کامل

Embedding Deep Metric for Person Re-identification: A Study Against Large Variations

Person re-identification is challenging due to the large variations of pose, illumination, occlusion and camera view. Owing to these variations, the pedestrian data is distributed as highly-curved manifolds in the feature space, despite the current convolutional neural networks (CNN)’s capability of feature extraction. However, the distribution is unknown, so it is difficult to use the geodesic...

متن کامل

Margin Sample Mining Loss: A Deep Learning Based Method for Person Re-identification

Person re-identification (ReID) is an important task in computer vision. Recently, deep learning with a metric learning loss has become a common framework for ReID. In this paper, we propose a new metric learning loss with hard sample mining called margin smaple mining loss (MSML) which can achieve better accuracy compared with other metric learning losses, such as triplet loss. In experiments,...

متن کامل

Deep Metric Learning for Practical Person Re-Identification

Various hand-crafted features and metric learning methods prevail in the field of person re-identification. Compared to these methods, this paper proposes a more general way that can learn a similarity metric from image pixels directly. By using a “siamese” deep neural network, the proposed method can jointly learn the color feature, texture feature and metric in a unified framework. The networ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neurocomputing

دوره 151  شماره 

صفحات  -

تاریخ انتشار 2015