Set-label modeling and deep metric learning on person re-identification
نویسندگان
چکیده
Person re-identification aims at matching individuals across multiple non-overlapping adjacent cameras. By condensing multiple gallery images of a person as a whole, we propose a novel method named SetLabel Model (SLM) to improve the performance of person re-identification under the multi-shot setting. Moreover, we utilize mutual-information to measure the relevance between query image and gallery sets. To decrease the computational complexity, we apply a Naive–Bayes Nearest-Neighbor algorithm to approximate the mutual-information value. To overcome the limitations of traditional linear metric learning, we further develop a deep non-linear metric learning (DeepML) approach based on Neighborhood Component Analysis and Deep Belief Network. To evaluate the effectiveness of our proposed approaches, SLM and DeepML, we have carried out extensive experiments on two challenging datasets iLIDS and ETHZ. The experimental results demonstrate that the proposed methods can obtain better performances compared with the state-of-the-art methods. & 2014 Elsevier B.V. All rights reserved.
منابع مشابه
Constrained Deep Metric Learning for Person Re-identification
Person re-identification aims to re-identify the probe image from a given set of images under different camera views. It is challenging due to large variations of pose, illumination, occlusion and camera view. Since the convolutional neural networks (CNN) have excellent capability of feature extraction, certain deep learning methods have been recently applied in person re-identification. Howeve...
متن کاملNonlinear Local Metric Learning for Person Re-identification
Person re-identification aims at matching pedestrians observed from non-overlapping camera views. Feature descriptor and metric learning are two significant problems in person re-identification. A discriminative metric learning method should be capable of exploiting complex nonlinear transformations due to the large variations in feature space. In this paper, we propose a nonlinear local metric...
متن کاملEmbedding Deep Metric for Person Re-identification: A Study Against Large Variations
Person re-identification is challenging due to the large variations of pose, illumination, occlusion and camera view. Owing to these variations, the pedestrian data is distributed as highly-curved manifolds in the feature space, despite the current convolutional neural networks (CNN)’s capability of feature extraction. However, the distribution is unknown, so it is difficult to use the geodesic...
متن کاملMargin Sample Mining Loss: A Deep Learning Based Method for Person Re-identification
Person re-identification (ReID) is an important task in computer vision. Recently, deep learning with a metric learning loss has become a common framework for ReID. In this paper, we propose a new metric learning loss with hard sample mining called margin smaple mining loss (MSML) which can achieve better accuracy compared with other metric learning losses, such as triplet loss. In experiments,...
متن کاملDeep Metric Learning for Practical Person Re-Identification
Various hand-crafted features and metric learning methods prevail in the field of person re-identification. Compared to these methods, this paper proposes a more general way that can learn a similarity metric from image pixels directly. By using a “siamese” deep neural network, the proposed method can jointly learn the color feature, texture feature and metric in a unified framework. The networ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neurocomputing
دوره 151 شماره
صفحات -
تاریخ انتشار 2015